

What Is Watershed-Based Permitting?

An *approach* to NPDES permitting that results in permits:

- Designed to attain watershed goals due to the consideration of <u>all</u> sources/stressors in a watershed or basin
- Developed via a watershed planning framework to communicate with stakeholders and integrate permit development among monitoring, water quality standards, TMDL, nonpoint sources, source water protection and other programs

Office Wastewater Management

3

PA ------

Office Wastewater Management 13

What is the Urban Wet Weather Problem?

Current regulatory, management and funding approaches address wet weather sources under separate Clean Water Act, and sometimes state, programs

PA=

Office Wastewater Management

What is the Urban Wet Weather Problem?

Estimated Annual Municipal Point Source Discharges

	Source	Averaç Volume	ge Discharge (billion gal.)
	Treat	ed wastewater	11,425
	🛛 🖓 Urbar	n stormwater	10,068
	\bigtriangledown cso		850
	▼ sso		10
	Total		22,353
	Report to Congress on th	he Impacts and Control of CSOs a	nd SSO (EPA 2004)
\$EPA		Office Wastew	vater Management 18

Pollutant Concentrations in Municipal Point Source Discharges					
Source (Annual Volume)	BOD ₅ (mg/l)	TSS (mg/l)	Fecal Coliform (colonies/100ml)		
Treated Wastewater (11,425 BG)	30 ^a	30 ^a	<200ª		
Stormwater (10,068 BG)	0.4-370	0.5-4,800	1-5,230,000		
CSO (850 BG)	3.9-696	1-4,420	3-40,000,000		
SSO ^b (10 BG)	6-413	10-348	500,000°		

^aTypical limit for wastewater receiving secondary treatment/limit for disinfected wastewater ^bConcentration in wet weather SSOs

^cMedian concentration (WDNR 2001)

19

Discharger	Phase I	Phase II	Total
MS4	1,000	6,000	7,000
Construction*	200,000	200,000	400,000
Industrial	100,000		100,000
This reflects an estima from Phase II Econor	te of the number of new nic Analysis	construction starts and	nually based on data

CSO Control Policy Implementation

- CWA Sec 402(q)(1) -- permits and orders "shall conform to" the 1994 CSO Policy
- Encouraging the use of EPA's Guidance: Coordinating CSO Long-Term Planning With Water Quality Standards Reviews as CSO communities, NPDES and water quality standards authorities, and stakeholders coordinate in the development of LTCPs
- Providing Regions and NPDES states with guidance and assistance for reviewing and approving LTCPs

SEX Office Wastewater Management

26

Report to Congress on CSOs and SSOs

KEY MESSAGES

- Impacts tend to be more clearly observable at the local watershed level than at the national level
- CSOs and SSOs can cause significant environmental and human health impacts at the local watershed level

\$E}A|------

Office Wastewater Management

What are we Currently Doing? Peak Wet Weather Flows at POTWs

- National Municipal Policy on Publicly-Owned Treatment Works – focused little attention on management of peak flows
- "Blending"/"Peak Flows"
 - Management of peak wet weather flows by routing some peak flow around treatment units, blending the rerouted flow with the flow receiving full treatment; and disinfecting if required
 - Proposed Blending Policy (99,000+ comments received)
 - New proposed policy for "Peak Flows"

Benefits of Wet Weather Integration

- Increased flexibility relative to traditional permit requirements that allows permittees to focus on watershed priorities and goals in a systematic and more cohesive manner.
- Elimination of redundant data collection, data analysis, and reporting requirements.
- Increased opportunities for efficiency, such as the opportunity for cross training and sharing responsibilities across local program activities.
- Potential cost savings through the pooling of resources (i.e., GIS applications, monitoring, and modeling).
 Office Wastewater Mar

Office Wastewater Management

37

Keeping Water Out of Sewer Systems

Flow Component	Management Practices	Sewer System
Reduce Storm Water	Reduce impervious cover, low	Combined sewer system
Runoff	impact development (LID) including	Separate storm sewer system
	green roofs and pervious	
Deduce Inflow	Pavements	Combined cower eveters
Reduce millow	sewer systems	Separate storm sewer system
Peduce Infiltration	Sewer rebabilitation techniques	Combined sewer system
	(e.g. grouting lining manhole	Sanitary sewer system
	repair. etc.)	Canitary Sewer System
Reduce (Consumptive)	Water conservation techniques	Combined sewer system
Water Use, which in	(low-low fixtures and appliances)	Sanitary sewer system
turn reduces flow to the		
sewer systems		

Local and National Recognition Earned by City's CSO Program

- Endorsement from the <u>Falls of the James Scenic</u> <u>River Advisory Committee</u> for City's CSO Program Special Order (June 14, 1999)
- <u>"Friend of the River Award"</u> from the James River Association (October 3, 1999)
- <u>1999 National CSO Control Program Excellence</u> <u>AWARD</u> from the USEPA
- Feature article in the 1999 September issue of "Civil Engineering Magazine"

65

GREELEY AND HANSEN

<section-header><section-header><list-item><list-item><list-item><list-item>

	QUESTIONS?
	Additional resources
SEM	Office Wastewater Management 96